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applied users. RACAH has been distributed to a number of
such persons, who are finding it useful. Knowledge aboutRACAH is a computer program developed to simplify calculations

involving generalized coupling coefficients. As a demonstration of what applications and capabilities users would like RACAH
its usefulness in doing this, we apply it to calculating the spin-orbit to have would allow us to build into the core program the
matrix elements of CrBr3 . From those matrix elements we can derive appropriate calculations relevant to other applications and,
the spin-orbit coupling coefficients, vital to discussing Kerr rotation.

perhaps, to develop libraries for special one-off calcula-We base our calculations on a cluster consisting of a Cr31 ion, sur-
tions. Details about obtaining RACAH are given after therounded by six Br2 ions in an octahedral configuration. The Racah–
summary.Wigner calculus, useful for doing such calculations, is built into

RACAH in such a way as to provide a natural approach to choosing The approach we take to the analysis of Kerr rotation
between possible group chains. Q 1996 Academic Press, Inc. in CrBr3 , requires the calculation of matrix elements of

spin-orbit operators, of known symmetry, between elec-
tron configurations with many open shells. From those the

1. INTRODUCTION magnitudes of the spin-orbit coupling constants can be
derived, the spin-orbit effect being the dominate cause ofMany spectroscopic problems require the evaluation of
magneto-optical effects in ferromagnetic materials. Ferro-matrix elements. To calculate these matrix elements, a
magnetic materials with high magneto-optical effects havesophisticated mathematical formalism, the Racah–Wigner
been applied to devices such as optical isolators, magneticcalculus is extremely useful [3, 8]. However, this formalism
sensors, and rewritable optical memories [1, 5]. In recentis not familiar to experimentalists and is still tiresome in
years there has been an increasing demand for materials

long calculations. A software package, called RACAH, has
with higher magneto-optical effects. This is therefore an

been developed at Canterbury. RACAH is a much more example of practical significance.
versatile and general version of the program which pro- The new aspects of this calculation are the presence of
duced the tables of Butler [3]. We demonstrate, with a

RACAH to take the labor out of calculating the vector cou-
specific example, how useful RACAH is for simplifying gen- pling coefficients (vcc’s) [3] and the way that choosing the
eral matrix elements to reduced matrix elements. right group chain to classify states reduces the calculation

RACAH is not restricted to this problem, however, and of matrix elements, even very complicated ones, to the
contains the necessary structure for a broad range of uses. calculation of vcc. In one view, RACAH is just a convenient
All point groups are recognized and the programming way of doing the tedious bits of calculating matrix ele-
structure of RACAH is versatile enough to allow many open ments. Thus many of the calculations in Piepho and Schatz
shells, as we have seen in this application. All 3jm, 6j, and [8] are trivially reduced to finding values for the reduced
9j can be calculated for all point groups, and the Wigner– matrix elements. The conceptual advantage of using
Eckart theorem can be used in collaboration with those RACAH is exactly analogous to the tensor calculus and
coupling coefficients to reduce matrix elements. Specific serves to unify all group theory calculations that arise in
information about the normalization of the operators is evaluating matrix elements. Contrary to the previous view-
not considered by the current version of RACAH. That is, point, RACAH allows one to think in a structurally simple
the actual values of the reduced matrix elements of some way and provides a means to calculate within that structure.
operator cannot be obtained. Therefore the only restriction RACAH allows the operators and symmetries of the physical
on the operators is that the group irrep labels associated problem to be retained throughout the calculation. The 6j
with the operators can be specified. and 9j that appear in more traditional reductions of matrix

The development of RACAH is an ongoing and long-term elements appear as special cases of 3jm, whose labels are
project (see Butler [3]). The core development is at the trivially constructed from those of the states and the oper-

ators.stage where it should largely be driven by feedback from
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TABLE I toward using the Schönflies notation which is more familiar
to spectroscopists.Schönflies (S) and Butler (B) Labelling for the Irreps of O on the

Left and D3 on the Right
2. LABELLING THE CLUSTER AND THE GROUND

S B S B S B S B STATE CONFIGURATION

A1 0 A2 0̃ or p0 A1 0 E9 As or s0 The molecular orbitals which are largely of Br composi-
tion are fully occupied in the clusters ground state. ThoseE 2 T1 1 A2 0̃ or p0 E 1
molecular orbitals with a mainly Cr composition are empty

Ds or s1 in the ground state, with the exception of the t2g orbital,
which is occupied by three electrons with parallel spins.

T2 1̃ or p1 E9 As or s0 E0 High Kerr rotations have been observed [7] and are attrib-
uted to the spin-orbit splitting of particular excited states.

2Ds or 2s1
Those excited states arise from the transition of an electron

E9 As̃ or ps0 U9 Ds or s1 in a t1u or t2u orbital to the eg oribital, a molecular orbital
which consists mainly of 3d orbitals of the chromium [9].

Note. The second label in the Butler columns is the form of the Butler Since this transition represents a transition from a non-
notation that RACAH recognizes.

bonding f orbital, of mainly Br character, to an antibonding
orbital, of mainly Cr character, it is known as a ‘‘charge
transfer’’ transition.

In Section 2 we discuss the labelling of the cluster and The ground state has the eg shell empty and the various
the ground state configuration and outline how RACAH shells of the Br6 that we shall consider, t 6

1u(r) and
recognizes group chains. Section 3 extends the group chain t 6

2u(r), full. So, with the three up-spin electrons in the t2g
to allow such effects as trigonal distortion to be taken into shell the ground state has the configuration
account. Section 4 demonstrates the transformation of the
spin-orbit to a form compatible with the group chain we (t 3

2g)(e0
g)(t 6

2u)(t 6
1u).

choose. In Section 5 we step through the calculation of
a particular matrix element, utilizing the Wigner–Eckart Given that the octahedral field is ‘‘strong,’’ we classify
theorem to its full potential. the orbital parts of the chromium orbitals using Oh 5 O 3

The multicenter reduced matrix elements which we have Ci . Similarly the orbitals on the individual bromine atoms
derived at that stage are unable to be calculated by RACAH are classified using Oh . The atomic orbitals of the Cr31 ion
so in Section 6 we give the results of reducing to single- which contribute to the relevant molecular orbitals of the
center reduced matrix elements. complex are the 3d, 4s, and 4p orbitals. The electronic

Section 7 shows the results of applying RACAH to finding configurations of the complex are assumed to be given by
the relationship between matrix element and reduced ma- a linear combination of atomic orbitals (LCAO).
trix element, as examined in Section 5. Finally, bringing The 4p orbitals on the single Br2 ions are first combined
together the results of Sections 6 and 7, we calculate the into molecular orbitals for the octahedral complex of six
spin-orbit coupling coefficients. Those spin-orbit coupling bromines. The symmetry types of the Br-molecular orbitals
coefficients are required to investigate the Kerr–rotation we obtain are given in Table II. The third column of the
spectra of CrBr3 . This work will be followed by a calcula- table contains the linear combinations of the orbital spaces
tion of the Kerr effect, again using a cluster approach.

1.1. The Butler Irrep Labelling Scheme TABLE II

The Butler notation, used extensively in both Butler [3] Molecular Orbitals for the Six Br2 Ions
and Piepho and Schatz [8], is based on a simple numerical

Schönflies Butler Factorisedlabelling scheme for irreps. The program RACAH takes
notation notation statesadvantage of this notation, while still recognizing many

other labelling schemes. See Table I for the relation be- s-orbital a1g 01 u(12, 12)01l
tween Schönflies and Butler irrep labels in the case of the f-orbital t1g 11 u(12, 12)11l

f-orbital t2g 1̃1 u(12, 12)1̃1lgroups O, and D3 . It is of particular importance to note
s-orbital eg 21 u(12, 12)21lthat an s is prefixed to a number to indicate half integer,
s-orbital t1u 12 1/Ï3u(01, 12)12l 2 Ï2/Ï3u(21, 12)12lallowing RACAH to express fractional irrep labels. For ex-
f-orbital t1u 12 Ï2/Ï3u(01, 12)12l 1 1/Ï3u(21, 12)12l

ample, s1 5 Ds and s5 5 AAs . This is particularly noticeable f-orbital t2u 1̃2 u(21, 12)1̃2l
when dealing with SU2 and SO3 . In this work we tend
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obtained by coupling the irreps of the permutation repre- this first for the chain, in Eq. (1), down to (SU2 3 Oh)Cluster

using brackets and commas in exactly the way we havesentation of O and the irrep of O given by the 4p orbitals
on an individual bromine. The details of this combination written the chain:
process need not concern us at the moment, but they are
important when we come to relate the reduced matrix Racah v3.1 Fri Apr 28 08:37:12 1995
elements of the molecular orbitals to the matrix elements .branch ((su2poh, su2poh) su2poh, su2poh)
of the bromide ions. su2poh

The Br6 orbitals are characterized not only by the sym- (((su2 p oh), (su2 p oh)) to (su2 p oh),
metry properties under the Oh group, but also by the extent (su2 p oh)) to (su2 p oh)
to which they partake in the bonding of the bromides to
the chromium. We have s-type bonding orbitals and f- The output confirms we have entered the chain correctly
type antibonding orbitals. The s and f molecular orbitals and indicates where to put the irreps when we come to
are the only nontrivial linear combinations. describe the states. The options for the chains below

With the addition of spin our classifying group becomes (SU2 3 Oh)Cluster are entered thus
SU2 3 Oh .

We now want to obtain a labelling scheme for the excited .branch su2poh opoh d3pd3d c3pc3i c3pc3 c3
states of the cluster. In the charge transfer states there are (su2 to o, oh) to (o to d3, (o to d3, ci))
three open shells, two on the Cr center and one on the to (d3 to c3, (d3 to c3, ci))
Br6 ‘‘molecule.’’ The overall symmetry of the state of the to (c3, c3i to c3) to c3
cluster must be SU2 3 Oh , before the inclusion of the
trigonal distortion, and so we couple these three orbitals or
at the SU2 3 Oh level. Although we can couple the shells
in any order it is natural to couple the two Cr orbitals

.branch (su2 o d3 c3, oh d3d c3i c3) c3
together first, and then to couple the Br6 orbital to the

(su2 to o to d3 to c3, (o to d3, ci) to
result. Thus our group chain currently looks like

(d3 to c3, ci) to c3) to c3

h((SU2 3 Oh)t2g
, (SU2 3 Oh)eg

) Q (SU2 3 Oh)Cr ,
(1) for the scheme in which the trigonal term is diagonal. The

second option branches the spin chain separately from the(SU2 3 Oh)Br6
j Q (SU2 3 Oh)Cluster ,

orbital chain, until they both reach C3 , at which point they
are joined by a coupled branching. At the second level ofwhere Q denotes a branching. This completes the classifi-
this chain, the product of O 3 Oh , there is an ambiguitycation of states imposed by the terms in the Hamiltonian
about the branch to the Oh below. Depending on whetherthat have Oh symmetry. The remaining terms are the spin-
the product O 3 Oh is bracketed as (O 3 (O 3 Ci)) ororbit contribution, the trigonal term, and the magnetic
((O 3 O) 3 Ci) we have a different interpretation for theexchange interaction.
coupling. We need the later form, so that we can branchWe consider two possible branching schemes, or chains,
the SU2 down to an O and then combine the product O 3below (SU2 3 Oh)Cluster , in which two of the perturbing
O into a single O by coupling them together. Two waysterms are diagonal. The trigonal distortion term of the
to implement such a scheme, within RACAH, areHamiltonian will be diagonal in the scheme

(SU2 3 Oh)Cluster Q OS 3 OL
h Q DS

3 3 DL
3d .branch (su2po, ci) (opo, ci) (o, ci) d3d

c3i c3
Q CS

3 3 CL
3i Q CS

3 3 CL
3 Q C J

3 ((su2 to o, o), ci) to ((o, o) to o, ci)
to (o to d3, ci) to (d3 to c3, ci)and the spin-orbit interaction will be diagonal in
to c3

(SU2 3 Oh)Cluster Q OS 3 OL
h Q O J

h Q DJ
3d Q C J

3i Q C J
3 .

and
The inclusion of those branching schemes will be consid-
ered in Section 3, but first we demonstrate how RACAH .branch (su2po opo o d3 c3, ci) c3
recognizes a branch. ((su2 to o, o) to o to d3 to c3, ci) to c3

2.1. Branching with RACAH
It is both physically reasonable, and RACAH compatible,
to drop the parity label at the earliest opportunity, thusOnce RACAH has been started our first action is to de-

scribe the group chain using the branch command. We do obtaining a simpler branching,
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.branch su2poh opo o d3 c3 indicates that the electrons in the separate shells are anti-
symmetrized, as well as those within the same shells.(su2 to o, oh to o) to o to d3 to c3

which we can take advantage of. Initially we will include 4. THE SPIN-ORBIT HAMILTONIAN
explicit parity labels at the O 3 Oh level since RACAH is

The matrix elements we seek arequite capable of dealing with them.

3. EXTENDING THE SYMMETRY SCHEME kP h(t 3
2g(4A2g), eg(2Eg))5Eg , t 5

1u(2T1u)j4T2uU9 ? T2urlaelu

3 HsouP h(t 3
2g(4A2g), eg(2Eg))5Eg , t 5

1u(2T1u)j4T2uU9 (2)Although we are only concerned with calculating the
spin-orbit coupling constant, and therefore do not need a ? T2urlaell,
definite symmetry scheme below the octahedral group
(OJ), we would like to exhibit one that could be used

wherein a calculation that went beyond spin-orbit effects, for
instance taking into account the trigonal distortion of

Hso 5 zt2g
(S ? L)t2g 1 zeg(S ? L)eg

1 zt1u
(S ? L)t1u

,the lattice.
We choose a group chain to classify the states that reflect

the environment of the Cr31 ion. Since the point group a sum of the spin-orbit operators for the electrons in the
symmetry of the Cr site is C3 , due to the trigonal distortion three open shells that are present. The spin-orbit operator
of the octahedral arrangement of bromines, the natural for each shell contains a parameter or coupling constant,
choice is the chain O . D3 . C3 . Therefore the kets are z, which depends on the particular radial character of that
essentially labeled with the following group structure molecular orbital and, hence, on which atomic orbitals it

is a linear combination.
h(SU2 3 Oh , SU2 3 Oh) Q SU2 3 Oh , SU2 3 Ohj

4.1. Facing Up to the Group ChainQ SU2 3 Oh Q O 3 O Q O Q D3 Q C3 ,
It is more enlightening to denote the three operators in

for states with three open shells. The branching SU2 3 the sum by
Oh Q O 3 O is a product branching of SUS

2 Q OS and
OL

h Q OL, while OS 3 OL Q OJ is a coupled branching. zt2g
(S ? L)t2g

^ (1 ? 1)eg
^ (1 ? 1)t1u

,
By virtue of having only one open shell, the ground state

zeg
(1 ? 1)t2g

^ (S ? L)eg
^ (1 ? 1)t1u

of the cluster need not include labels for the closed shells
t1u and t2u . Thus the ground state can be written in a simpler
form, as and

ut 3
2g(4A2g)U9 ? A2U9E0Dsl.

zt1u
(1 ? 1)t2g

^ (1 ? 1)eg
^ (S ? L)t1u

The excited states are referred to as ‘‘charge transfer
which is equivalent to the prior equation, since the opera-states’’ due to their connection with the ground state
tors have trivial action on the spaces that they do notthrough the charge transfer transitions. The designations
apply to.of these states, within the symmetry scheme given at the

To apply the full power of the Wigner–Eckart theoremstart of this section, are
(Section 5) we need to classify the operator Hso using all
groups of the group chain labelling the states. The set ofuP h(t 3

2g(4A2g), eg(2Eg))5Eg , t 5
1u(2T1u)j4T2uU9 ? T2ur l ell

three spin operators, hsx , sy , szj, forms a basis for irrep 1
of SU2 , which branches uniquely to t1 of O. The sameand
analysis applies to the three orbital angular momentum
operators, hlx , ly , lzj, although there is a parity label presentuP h(t 3

2g(4A2g), eg(2Eg))5Eg , t 5
2u(2T2u)j4T2uU9 ? T2ur l ell

as well. For the lower part of the chain, SU2 3 Oh . O 3
Oh . Oh . O . D3 . C3 , the irrep labels for the spin-for excitations from the t1u and t2u open shells, respectively,
orbit operators are u3T1gT1 .T1g A1g000u. With the completeand for the various values of r, l, e, and l that occur. l,
chain the labels for the t1u term aree, and l are labels for the irreps of O, D3 , and C3 , respec-

tively. r is a multiplicity label for the coupled branching
zt1u

[(1A1g , 1A1g)1A1g , 3T1g]3T1gT1 ? T1g A1a1 .OS 3 OL Q OJ. In these states the P [8, Section 19.7]
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There are similar expressions for the t2g and eg terms which Using this we transliterate Hso into a form that transforms
under the same group chain as the states,differ only in the position of the 3T1g inside the nested

brackets (and the z factor):
Hso 5 2Ï3[zt2g

(S ^ L)[(3T1g,1A1g)3T1g,1A1g]3T1gT1?T1gA1gA1a1

zt2g
[(3T1g , 1A1g)3T1g , 1A1g]3T1gT1 ? T1g A1a1

1 zeg
(S ^ L)[(1A1g,3T1g)3T1g,1A1g]3T1gT1?T1gA1gA1a1 (11)

zeg
[(1A1g , 3T1g)3T1g , 1A1g]3T1gT1 ? T1g A1a1 .

2 zt1u
(S ^ L)[(1A1g,1A1g)1A1g,3T1g]3T1gT1?T1gA1a1].

We follow the conventions of Butler [3] in defining the
coupling of two operators. We adopt as a basis of the space

Now that the spin-orbit Hamiltonian is in a compatibleof operators
basis we can proceed with the reduction of the matrix
element using the Wigner–Eckart theorem. It is at thishs1T1A20, s1T1e1, s1T1e21j for S, (4)
stage that 3jm (and other coefficients disguised as 3jm)

hl11T1gT1A20, l11T1gT1e21, l11T1gT1e1j for L, (5) appear and RACAH shows its worth.

and couple those bases using the coupling coefficients for
the chain O . D3 . C3 , treating the parity and SU2 labels 5. APPLICATION OF THE WIGNER–
as parentage labels: ECKART THEOREM

(S ^ L)
3T1gT1?T1gA1gA1A10

(6)
In this section we apply the Wigner–Eckart theorem

several times to the matrix elements we wish to calculate.
5 O

a,b
kT1a, T1b u 0 0 0l(sT1a ^ lT1b).

The Wigner–Eckart theorem [3, Eq. (4.2.3)],

kx1l1l1uTllux2l2l2l
(12)

Expanding the right-hand side we obtain

(S ^ L)
3T1gT1.T1gA1gA1A10 5

1

Ï3
(sT11 ^ lT121) 5 O

r
Sl1

l1
DSl* l l2

l*1 l l2

Dr

kx1l1iTlix2l2lr

2
1

Ï3
(sT10 ^ lT10) (7)

relates the matrix elements of some operator to a 3jm of
the transforming group, multiplied by a normalizing factor.
This normalizing factor is called a reduced matrix element.1

1

Ï3
(sT121 ^ lT11)

This reduced matrix element contains the properties of the
operators, Tll, reduced by the extraction of their transfor-

which differs from the expression we seek, mation properties. In many applications, states and opera-
tors transform according to irreps of groups in some chain,

Hso 5 (sx ^ lx) 1 (sy ^ ly) 1 (sz ^ lx), (8)
G . H. The Wigner–Eckart theorem may be applied to
either group, and the reduced matrix elements with respectin that it is expressed in a different basis. We follow Butler
to each group may be related to each other. This allows,[3] and Piepho and Schatz [8] in relating the hx, y, zj basis
for example, octahedral reduced matrix elements to beto the hT11, T1 2 1, T10j basis. We have
related to SO3 reduced matrix elements.

Before considering the t1u-shell contribution to Hso we
oT11 5

1

Ï2
ox 1

i

Ï2
oy need to introduce some notation. Since we are dealing with

matrix elements that are diagonal, except for the multiplic-
ity label r, we denote the bra by kpu on the understandingoT121 5 2

1

Ï2
ox 1

i

Ï2
oy (9)

that it has the same labels as the ket, with the possible
exception of the multiplicity label. Furthermore, we use

oT11 5 oz (S ^ L)t1u
to denote what would otherwise be written

which implies that
[(101A1g, 101A1g)

1A1g, S1LT1g]
3T1gT1?T1gA1a1,

(S ^ L)
3T1gT1.T1gA1gA10 5 2

1

Ï3
((sx ^ lx) 1 (sy ^ ly)

(10)
although we often superscript the last few labels so that
we know how far back the operator has been reduced.
Through the use of these expedients and the Wigner–1 (sz ^ lz)).
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Eckart theorem the t1u-shell contribution to the matrix 5 ulu1/2uT1u21/2hT2jhT2T2T1jhU9T2lj
elements in Eq. (2) can be reduced to the SU2 3 Oh level
in one step, with the result HU9 U9 T1

T2 T2 l
J

r9r0s
.

kp u zt1u
(S ^ L)

3T1gT1?T1gA1a1t1u
uh(4A2g , 2Eg)5Eg , 2T1uj4T2uU9

Returning to the matrix element, Eq. (13), we factor the? T2urlll
3jm and substitute the above expression involving the 6j.
Doing this the matrix element can be expressed as

5 O
s 1

4T2u

U9 ? T2u

r9

l

l

21
4T2u

3T1g
4T2u

U9 ? T2u T1 ? T1g U9 ? T2u

r9 0 r

l A1 l

l* a1 l

2s0 (13) O
s

ulu1/2uT1u21/2hT2jhT2T2T1jhU9T2ljHU9 T2 l

T2 U9 T1
J

s0rr9

(16)

3S Ds

U9
DS Ds 1 Ds

U9 T1 U9
D0

s
Sl

l
DSl A1 l

l* a1 l
D.

3 kpizt1u
(S ^ L)[(1A1g,1A1g)1A1g,3T1g]3T1gt1u

i

h(4A2g , 2Eg)5Eg , 2T1uj4T2ul.
The last 3jm can be written as a 2jm times the square root
of the dimension of l, one in this case, and divided by the

This expression is analogous to Eq. (18.4.6) of Piepho square root of the dimension of l (Eq. (3.3.8) of Butler
and Schatz [8]. To see this clearly we use a relation between [3]). This means the last 2jm and 3jm become a simple
the 3jm of a coupled branching, G 3 G Q G, and a 9j for G, ulu21/2, which cancels one of the dimension factors at the

beginning of the expression. The 2j phase hT2j is 11 be-
cause T2 is a true irrep. Since the SO3 Q O 2jm is unity,
the only obstruction preventing favorable comparison of1

l1l2

r1

l
21

l*1 l*2 k1 ? k2 e1 ? e2

r1 t r2

l* k e
2

s1s2

s

our expression with Eq. (18.4.6) of Piepho and Schatz [8]
is the dimension factor uT1u21/2. This is explained by the
different operators in the reduced matrix element. Since
s1ut1 5 (1/Ï3)z(S ^ L) the two expressions are indeed in5 H(l1l2l)H(k1k2k)H(e1e2e)ulu1/2uku1/2ueu1/2 (14)
agreement (uT1u 5 3).

So the final form for this step of the reduction is either
Eq. (13) or5

l1 l2 l*

k*1 k*2 k

e*1 e*2 e

s1 s2 s

6r1

t

r2

.

kp u zt1u
(S ^ L)

3T1gT1?T1gA1a1t1u
u h(4A2g , 2Eg)5Eg , 2T1gj

4T2uU9 ? T2urlll

Since, in the case we are considering k is restricted to A1 ,
we can, after cyclicly permuting the rows of the 9j, apply 5 O

s
uT1u21/2hT2T2T1jhU9T2ljHU9 T2 l

T2 U9 T1
J

s0rr9

(17)
Eq. (3.3.36) of Butler [3], yielding a 6j plus phase and
dimension factors:

S Ds 1 Ds

U9 T1 U9
D0

s

1
U9 ? T2u

r9

l
21

U9 ? T2u T1 ? T1g U9 ? T2u

r9 0 r

l A1 l
2

s0

0

3 kpizt1u
(S ^ L)[(1A1g ,1A1g)1A1g ,3T1g]3T1gt1u

i

h(4A2g , 2Eg)5Eg , 2T1uj4T2ul.

The next step in the reduction is very like the previous
5 ulu5

U9 T2 l

U9 T2 l

T1 T1 A1

s 0 0

6
r

r9

0
one, except that the group is not O but SU2 3 Oh . Applying
the Wigner–Eckart theorem to the partly reduced matrix
element gives(15)
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TABLE III

The Output from RACAH

t1u s0 \0 s1 \1 s1 ps0 t2u s0 \0 s1 \1 s1 ps0

s0 0 0 0 s0 0 0 01

40Ï6
2

1

40Ï3
\0 s1 0 0 \0 s1 0 01

60Ï3

1

60Ï3
2

1

60Ï3
2

1

60Ï3
\1 s1 0 0 \1 s1 0 01

60Ï3
2

1

120Ï3
2

1

60Ï3

1

120Ï3
ps0 0 0 0 ps0 0 0 0

2
1

24Ï6

1

24Ï6

t*2g s0 \0 s1 \1 s1 ps0 t*2g s0 \0 s1 \1 s1 ps0

s0 0 0 0 s0 0 0 01
36

1

18Ï6
\0 s1 0 0 \0 s1 0 01

27Ï2

1

27Ï2

1

27Ï3

1

27Ï3
\1 s1 0 0 \1 s1 0 01

27Ï2
2

1

54Ï2

1

27Ï3
2

1

54Ï3
ps0 0 0 0 ps0 0 0 0

2
5

108
2

5

54Ï6

2jm–3jm combinations, except for the parity piece whichkpizt1u
(S ^ L)[(1A1g ,1A1g)1A1g ,3T1g]3T1gt1u

i
is equal to one, yields

h(4A2g , 2Eg)5Eg , 2T1uj4T2ul
(18) S5Eg ? 2T1u

4T2u
DS5Eg ? 2T1u

1A1g ? 3T1g
5Eg ? 2T1u

4T2u
3T1g

4T2u
D5S5Eg ? 2T1u

4T2u
DS5Eg ? 2T1g

1A1g ? 3T1g
5Eg ? 2T1u

4T2u
3T1g

4T2u
D

3 kpizt1u
(S ^ L)(1A1g ,1A1g)1A1g ,3T1gt1u

i(4A2g , 2Eg)5Eg , 2T1ul.
5 H(2Ds As)H(2Ds As)u2u21/2uDsuhDsjh2Ds AsjhDs Ds1jHAs As 1

Ds Ds 2
J (20)

Because we are dealing with a direct product of three
groups, SU2 , O, and Ci , the 3jm and 2jm each factor into 3 uEu21/2uT2uhT2jhET2T1jhT2T2T1jHT1 T1 T1

T2 T2 E
J.

three pieces:

Factoring the reduced matrix element of the spin-orbitS5Eg ? 2T1u

4T2u
DS5Eg ? 2T1u

1A1g ? 3T1g
5Eg ? 2T1u

4T2u
3T1g

4T2u
D operator into a reduced matrix element of the unit opera-

tor, on the coupled eg and t2g orbitals (the chromium orbit-
als), and a reduced matrix element for the standard spin-
orbit operator, on the t1 orbital, we get5S2 ? As

Ds
DS2 ? As 0.1 2 ? As

Ds 1 Ds
DSE ? T1

T2
D

(19)
kpizt1u

(S ^ L)(1A1g ,1A1g)1A1g ,3T1gt1u
i(4A2g , 2Eg)5Eg , 2T1ulSE ? T1 A1 ? T1 E ? T1

T2 T1 T2
D

5 k(4A2g , 2Eg)5Egi1i(4A2g , 2Eg)5Eglkt 5
1u(2T1u) (21)

izt1u
(S ^ L)

3T1gt1g
it 5

1u(2T1u)l.
3S1 ? 2

2
DS1 ? 2 1 ? 1 1 ? 2

2 1 2
D.

The reduced matrix element of the unit operator is the
square root of the dimension of the irrep we have reducedThe irrep labels used for the parity group are 1 and 2,

rather than the more common g and u, respectively. Using back to. Therefore, we can write the reduced matrix ele-
ment, in Eq. (13) and Eq. (17), asEq. (14) and Eq. (3.3.36) of Butler [3] on each of the
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TABLE IV This naturally factors into a reduced matrix element for the
spin and a reduced matrix element for the orbital angularState Energy Changes Due to Spin-Orbit Coupling
momentum of an electron in the t1u(f) molecular orbital.

State p(cm21) p(eV) 3 1023 The spin reduced matrix element is standard, but the or-
bital reduced matrix element involves considering many-

ut1u s0l 37.7 4.7 center integrals and is therefore more complicated. The3

80Ï6
z Br

4p

required calculations were performed in Dillon et al. [6],
ut1u \0 s1l 53.3 6.63

80Ï3
z Br

4p but required some corrections. The single-center reduced
matrix element for the t1u(f) molecular orbital isut1u \1 s1l 106.5 13.23

40Ï3
z Br

4p

kAs ? t1u(f)izt1u
(S ^ L)iAs ? t1u(f)l 5 2DszBr

4p . (24)ut1u ps0l 2153.8 219.1
2

1
16

z Br
4p

ut2u s0l 237.7 24.7 We also require the reduced matrix elements of Hso for
2

3

80Ï6
z Br

4p
the t2u(f), t1u(s) molecular orbitals, and the t2g and t1u

ut2u \0 s1l 253.3 26.6 Cr orbitals:2
3

80Ï3
z Br

4p

ut2u \1 s1l 2106.5 213.2 kAs ? t2u(f)izt2u
(S ^ L)iAs ? t2u(f)l 5 2DszBr

4p2
3

40Ï3
z Br

4p

ut2u ps0l 153.8 19.1 kAs ? t1u(s)izt1u(s)(S ^ L)iAs ? t1u(s)l 5 2AkSzBr
4p

1
16

z Br
4p

ut*2g s0l 27.7 20.95 kAs ? t2gizt2g
(S ^ L)iAs ? t2gl 5 23z Cr

3d(2z Cr
4p 2 Ï6z Cr

3d)
Ï5

72Ï6
ut*2g \0 s1l 22.2 20.27 kAs ? tCr

1uizt1u
(S ^ L)iAs ? tCr

1ul 5 3z Cr
4p .(2Ï5z Cr

4p 2 Ï3z Cr
3d)

1

72Ï3

S is related to the overlap between p(s) and p(f) orbitalsut*2g \1 s1l 27.3 20.91
(Ï2z Cr

4p 2 Ï3z Cr
3d)

Ï5

54Ï6 on neighboring bromine ions.

ut*2g ps0l 212.0 21.5
(10Ï2z Cr

4p 2 5Ï6z Cr
3d)

Ï5

216Ï6 7. THE INS AND OUTS OF RACAH

After starting RACAH the first task is to describe the
chain of groups that are used to classify states and opera-
tors (Section 2.1). Since the group SO3 3 Oh > SU2 3 Oh

kpizt1u
(S ^ L)[(1A1g ,1A1g)1A1g ,3T1gt1u

ih(4A2g , 2Eg)5Eg , 2T1uj4T2ul occurs so often, we give it a shorter name before describing
the branching:

5 uDsuuT2uhDsjh2Ds AsjhDs Ds1jHAs As 1

Ds Ds 2
JhET2T1jhT2T2T1j

(22)
Racah v3.1 Fri Dec 15 09:37:42 1995
.group groupname x so3poh
x is so3 p oh
.branch ((x,x)x,x)x opo oST1 T1 T1

T2 T2 E
D ((x, x) to x, x) to x to (so3 to o, oh to o)

to o
3 kt 5

1u(2T1u)izt1u
(S ^ L)

3T1gt1u
it 5

1u(2T1u)l. .

6. MULTICENTER MATRIX ELEMENTS
TABLE V

RACAH can calculate the factors that appear in the previ- The Spin-Orbit Coupling Constants
ous section, but we are faced with reducing the many-

SO coupling constant Value (cm21)particle reduced matrix element to a one-particle matrix
element ourselves. This involves the use of coefficients of

l1u(f) 2123fractional parentage which, at the moment, RACAH cannot 2
1
20

z Br
4p

calculate. We shall content ourselves with quoting the re-
l2u(f) 1231

20
z Br

4psult for this case, from Piepho and Schatz [8],
l1u(s) uSu2461

10
uSuz Br

4p

kt 5
1u(2T1u)izt1u

(S ^ L)
3T1gt1u

it 5
1u(2T1u)l

(23) l2g* 2401
6

(z Cr
4p 2 z Cr

3d)
5 2kAs ? t1u(f)izt1u

(S ^ L)iAs ? t1u(f)l.
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Because the matrix elements do not depend on irrep This process is repeated for each state with each opera-
tor, using the following strings to represent the stated la-labels lower than the octahedral group we do not take the

chain any lower. The matrix element we want to calculate, bels. The results are given in Table III.
Eq. (2), can be expressed as a sum over coefficients multi-
plying reduced matrix elements of the type found on the shell states.
right-hand side of Eq. (22). RACAH gives us the coefficients eg ((s1.˜01,0.01)s1.˜01,0.01)s1.˜01 (s1
of the reduced matrix elements in this expression. The s1,˜01 ˜0) ?
reduced matrix elements themselves are calculated using t1u ((s1.˜01,s0.21)2.21,s0.12)s1.˜12 (s1
the procedure outlined in Section 6. s1,˜12 ˜1) ?

Now we simply ask for the Wigner–Eckart coefficients, t2u ((s1.˜01,s0.21)2.21,s0.˜12) (s1
with question marks in the place of irreps or multiplicities s1,˜12 ˜1) ?
we wish to range freely. The output is such that, for exam- t2gˆ* ((1.˜11,0.01)1.˜11,s0.˜12)s1.˜12
ple, 1/8.5#2.3 5 11/8 3 5Ï2 3 3 (s1 s1,˜12 ˜1) ?

operator states.weme ((s1.˜01,s0.21)2.21,s0.12)s1.˜12
t2g ((1.11,0.01)1.11,0.01)1.11 (1 1,11(s1 s1,˜12 ˜1) ? %
1) 0%.((0.01,0.01)0.01,1.11)1.11 (1 1,11 1)
t1u ((0.01,0.01)0.01,1.11)1.11 (1 1,110 %
1) 0%.((s1.˜01,s0.21)2.21,s0.12)s1.˜12 (s1

s1,˜12 ˜1) ? eg ((0.01,1.11)1.11,0.01)1.11 (1 1,11
1) 0

(((s1.˜01, s0.21) 2.21, s0.12) s1.˜12(s1
s1, ˜12 ˜1) s0 u ((0.01, 0.01) 0.01, 7.1. The State Energies
1.11) 1.11(1 1, 11 1) 0, ((s1.˜01,

The matrices obtained by RACAH are not diagonal, ands0.21) 2.21, s0.12) s1.˜12(s1 s1, ˜12
so we must find the eigenvalues of the two by two blocks˜1) s0) 1 11/8.5#2.3

(((s1.˜01, s0.21) 2.21, s0.12) s1.˜12(s1 to obtain the contribution of the spin-orbit interaction to
s1, ˜12 ˜1) \0 s1 u ((0.01, 0.01) the energy of these states. We multiply those values by the
0.01, 1.11) 1.11(1 1, 11 1) 0, reduced matrix elements of Section 6 to give the energies of

((s1.˜01, s0.21) 2.21, s0.12) s1.˜12(s1 the various states.
s1, Those state energies are given in Table IV. We use the˜12 ˜1) \0 s1) 1 11/4.3.5#3

notation ut1us0l, for example, to represent the energy of(((s1.˜01, s0.21) 2.21, s0.12) s1.˜12(s1
the s0 projection state of the t1u level. We give the energiess1, ˜12 ˜1) \0 s1 u ((0.01, 0.01)
in terms of the z ’s as well as the explicit values. The values0.01, 1.11) 1.11(1 1, 11 1) 0,
of the free z parameters,((s1.˜01, s0.21) 2.21, s0.12) s1.˜12(s1

s1,
˜12 ˜1) \1 s1) 1 11/4.3.5#3 z Cr

3d 5 290 cm21

(((s1.˜01, s0.21) 2.21, s0.12) s1.˜12(s1
z Cr

4p 5 50 cm21s1, ˜12 ˜1) \1 s1 u ((0.01, 0.01)
0.01, 1.11) 1.11(1 1, 11 1) 0,

z Br
4p 5 2460 cm21,((s1.˜01, s0.21) 2.21, s0.12) s1.˜12(s1

s1,
˜12 ˜1) \0 s1) 1 11/4.3.5#3 are taken from Dillon et al. [6]

(((s1.˜01, s0.21) 2.21, s0.12) s1.˜12(s1
s1, ˜12(s1 s1, ˜12 ˜1) \1 s1 u ((0.01, 7.2. The Spin-Orbit Coupling Constant
0.01)

The spin-orbit coupling constants are defined by0.01, 1.11) 1.11(1 1, 11 1) 0,
((s1.˜01, s0.21) 2.21, s0.12) s1.˜12(s1
s1,

l 5 2
k4T2iHsoi4T2l

kLiLiLlkSiSiSl
, (25)˜12 ˜1) \1 s1) 1 21/8.3.5#3

(((s1.˜01, s0.21) 2.21, s0.12) s1.˜12(s1
s1, ˜12(s1, ˜12 ˜1) ˜s0 u ((0.01, 0.01)

where, for this case, kLiLiLl 5 2Ï6 and kSiSiSl 50.01, 1.11) 1.11(1 1, 11 1) 0,
ÏS(S 1 1)(2S 1 1).((s1.˜01, s0.21) 2.21, s0.12) s1.˜12(s1

In this case we need to calculate the reduced matrixs1,
˜12 ˜1) ˜s0) 1 21/8.3#2.3 elements for Hso as found on the left-hand side of Eq. (22).
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We give below examples of how we would input requests 8. SUMMARY
to RACAH, for the various factors appearing on the right-

We have demonstrated the power and convenience withhand side of that equation, and how RACAH returns the
which RACAH can calculate reduced matrix elements. Ex-result. To the right we briefly explain each step.
tensions of RACAH are planned to take in the simplification
of the multicenter reduced matrix elements to single-center
reduced matrix elements.

Racah v3.1 Fri Dec 15 09:51:06 1995
We have given the spin-orbit energies of the charge-

transfer states and the spin-orbit coupling constants associ-
.group su2 Selecting a group.

ated with this. The results of this paper are being used to
su2

investigate the Kerr rotation of CrBr3 , an effect which
hinges on the spin-orbit coupling.

.irrep s1 Obtaining
A copy of RACAH can be obtained by emailing a message

4 s1 s1 3 2 14 information about
to racah-help@phys.canterbury.ac.nz. RACAH has been

and irrep, e.g.
compiled and tested under MS-Dos, Unix, and VMS.

dimension514

.3j 2 s1 s0 Asking for a 3j REFERENCES
2 s1 s0 1 phase

1. M. Abe, and M. Gomi, J. Magn. Mat. 84, 222 (1990)..3j s1 s1 1
2. P. M. Argyres, Phys. Rev. 97, 334 (1955).s1 s1 1 1

3. P. H. Butler, Point Group Symmetry Applications (Plenum, New
York, 1981)..6j s0 s0 1 s1 s1 2 Asking for a 6j

s0 s0 1 s1 s1 2 1 4. P. H. Butler, A. M. Ford, and M. F. Reid, J. Phys. B: At. Mol. Phys.
16, 967 (1983).11/2#2.5

5. J. F. Dillon Jr., J. Magn. Mat. 84, 213 (1990).

6. J. F. Dillon Jr., H. Kamimura, and J. P. Remika, J. Phys. Chem. SolidsPutting those values together with Eq. (23) and (24) gives
27, 1531 (1966).

7. W. Jung, J. Appl. Phys. 36, 2422 (1965).
l1u 5 2

1
20

z Br
4p . (26)

8. S. B. Piepho and P. N. Schatz, Group Theory in Spectroscopy (Wiley,
New York, 1983).

The complete set of spin-orbit coupling coefficients is 9. K. Shinagawa, T. Suzuki, T. Saito, and T. Tsushima, J. Magn. Magn.
Mat. 140–144, 171 (1995).given in Table V.


